

« EMR-based simulation of electric-gas ship »

Fabian AMOROS, Walter LHOMME, Jean-Frédéric CHARPENTIER, Jean-Yves BILLARD, Benoit NOTTELLET

University of Lille, Naval Academy Research Institute, Segula Technologies, France

« INTRODUCTION »

Project : Retrofit a 50 years old Diesel Ship: The Sydney

Coalis

• Objectives

- Show the feasibility of the hybrid retrofit process
- Gas technology demonstrator
- The Simulator will be used to design the propulsion

« **MODELLING** »

Architecture of the Hybrid vessels

- Modellling -

EMR'22, Sion, June 2022

7

Rotation Speed (rpm)

- Modellling -

EMR'22, Sion, June 2022

9

Electric machine + inverter

- Efficiency Map from
 - Experimental data
 - Model-based efficiency map

- Modellling -

EMR'22, Sion, June 2022

10

Propeller Empirical model

$$J = \frac{V_a}{n.D}$$

• $\eta = \frac{J}{2.\pi} \cdot \frac{K_T}{K_O}$

Advance parameter Thrust coefficient Torque coefficient Efficiency

- Modellling -

EMR'22, Sion, June 2022

11

Environment

- Unaccurate empirical model
 - Typical 10 15 % error

« EMR OF THE SYSTEM »

- EMR of the System -

EMR'22, Sion, June 2022

16

« SIMULATION RESULTS »

- Simulation Results -

- On-board measurement on the Seine River
 - Upstream and downstream navigation at fixed engine rotation speed
 - Rotation Speed ; Power and Torque available

- Simulator Input
 - Design / Parameters of the vessels
 - Advance Speed step

EMR of the current thermic vessels - used for validation

- Simulation Results -

EMR'22, Sion, June 2022

Torque for the identified Waterway

Water velocity (km/h)

Power (kW)

19

« CONCLUSION »

- Dynamic validation on progress
- Implementation of a simulation tool using the PANDA approach (EMR)
 - Accurate enough for design purpose
 - Generic
 - ➢ For other ship application
 - For other generator technology
 - > For other hybrid architecture

« **BIOGRAPHIES** »

Walter LHOMME

Research topics:

University of Lille, France

L Université de Lille PhD (2007) and HdR (2020) in Electrical Engineering

> EMR, HIL simulation, EVs and HEVs, Energy Storage Subsystem, Traction subsystems,

électronique de puissance de l MEGEVH

French network on HEV

Jean-frederic.charpentier@ecole-navale.fr

JF Charpentier

Naval Academy Research Institute Researcher

Research topics: electrical and e-hybrid naval propulsion, marine renewable energy, electric machines and drives

- Authors -

IRENAV

Jean-yves.billard@ecole-navale.fr

Jean-yves BILLARD, Ecole navale, Research Institute

Researcher Research topics: Energy efficiency of ships, Naval Propulsion, Naval hydrodynamics, Dynamic stability

benoit.nottellet@segula.fr>

Benoit NOTTELLET, Segula Technologies

Head of R&I on naval activity Research topics: Energy efficiency of ships, Naval Propulsion, Alternative energy for sips, loading optimization

Thank you for your attention !

IRENAV

« Appendix »

- Simulation Results for Different Waterway -

EMR'22, Sion, June 2022

27

Engine Torque for different Waterway

- Simulation Results for Different Waterway -

EMR'22, Sion, June 2022

28

Propeller Empirical model

•
$$J = \frac{V_a}{n.D}$$

Advance parameter • K_T Infusition • K_Q Torque coe • $\eta = \frac{J}{2.\pi} \cdot \frac{K_T}{K_Q}$ Efficiency Thrust coefficient Torque coefficient

