EMR'22 HES-SO Sion June 2022

«Battery modeling and state estimation in EV applications: An EMR approach»

Asst. Prof. Bedatri MOULIK

Amity University, India

EMR'22 HES-SO Sion June 2022

« PART 1: INTRODUCTION »

- Introduction -

4

Electric vehicles and Lithium ion batteries

Utilization potential of EV batteries: lifetime and safety issues

- → Utilization of EV battery to its maximum capacity
- ➔ Requirement of suitable strategies

Battery modelling and state estimation in EV applications: An EMR approach - Introduction -EMR'22, Sion, June 2022

Pillars of battery modeling

- → Suitable battery models and state estimation techniques
- → Incorporating real-time phenomena
- → Trade-off between accuracy and real-time applicability

EMR'22 HES-SO Sion June 2022

« PART 2: BATTERY CONCEPTUAL MODELING »

- Battery conceptual modeling -

EMR'22, Sion, June 2022

7

Equivalent circuit model: structural model

Generic model with 2 RC branches and fixed parameters

- Battery conceptual modeling -

EMR'22, Sion, June 2022

8

Equivalent circuit model: structural model

Dependence on internal cell characteristics and interaction with environment/unknown load demand

- ➔ Capacity correction
- → Updating of other parameters based on capacity

- Battery conceptual modeling -

EMR'22, Sion, June 2022

9

Equivalent circuit model: structural model

Dependence on internal cell characteristics and interaction with environment/unknown load demand

Variable related to energy without instantaneous change: energetic variable is voltage

Battery modelling and state estimation in EV applications: An EMR approach - Battery conceptual modeling - *EMR'22, Sion, June 2022* State of charge (SOC) estimation

- Battery conceptual modeling -

EMR'22, Sion, June 2022

11

State of charge (SOC) estimation

•
$$SOC(t) = SOC(t-1) - \frac{1}{C_{capcity}} \int_{t-1}^{t} \eta I(t) dt$$

Problem 1:
uncertainity

→ Kalman filter based initial SOC prediction >> hybrid method

- Battery conceptual modeling -

EMR'22, Sion, June 2022

13

State of charge (SOC) estimation

□
$$SOC(t) = SOC(t-1) - \frac{1}{C_{capcity}} \int_{t-1}^{t} \eta I(t) dt$$

Problem 2:
capacity fade

- Battery conceptual modeling -

EMR'22, Sion, June 2022

14

State of charge (SOC) estimation

■
$$SOC(t) = SOC(t-1) - \frac{1}{C_{capcity}} \int_{t-1}^{t} \eta I(t) dt$$

Problem 2:
capacity fade
Capacity
correction factor

→ Integrating the effect of capacity fade with a correction factor>> adaptive method

Battery modelling and state estimation in EV applications: An EMR approach - Battery conceptual modeling -IS EMR'22, Sion, June 2022

Battery capacity

Based on nominal/standard operating conditions (known C-rate, temperature, and DoD), actual operating conditions (real drive cycles) can be deviated from the standard by a severity factor σ as

 $\sigma(DoD,T) = \frac{Ah - nominal}{Ah - actual}$

$$Ah - actual = \int |I(t)|dt$$

 $Ah - effective = \sum \sigma(event) \cdot Ah - actual (event)$

→ Including a severity or weight associated with a driving event

- Battery conceptual modeling -

EMR'22, Sion, June 2022

16

Determination of $C_{capcity}$ and C_{lost}

- \Box Capacity lost C_{lost} can be calculated based on the effective Ah
- \Box The updated capacity $C_{capcity}$ (t) is initial minus the lost capacity

$$C_{lost}(t) = K.(Ah - effective)^{z}$$

$$C_{capcity}(t) = C_{initial} - C_{lost}(t)$$

- Battery conceptual modeling -

EMR'22, Sion, June 2022

17

Determination of $C_{capcity}$ and C_{lost}

□ The calculated capacity can be used to update/correct the actual cell capacity

$$C_{lost}(t) = K. (Ah - effective)^{z}$$

→ Determining Ccapacity dynamically to correct the battery capacity

- Battery conceptual modeling -

EMR'22, Sion, June 2022

18

EMR-based BEV model with hybrid-adaptive SOC estimation

□ Simulation of a BEV example from EMR summer school 2021

→ BEV model with functional description using EMR

Battery modelling and state estimation in EV applications: An EMR approach - Battery conceptual modeling -EMR'22, Sion, June 2022

EMR-based BEV model with hybrid-adaptive SOC estimation

→Inversion-based control of each element step by step

Battery modelling and state estimation in EV applications: An EMR approach - Battery conceptual modeling -*EMR*'22, Sion, June 2022

EMR-based BEV model with hybrid-adaptive SOC estimation

→Estimation of SOC and integration with strategy

EMR'22 HES-SO Sion June 2022

« PART 5: CASE STUDY»

Driving cycles

→ Hybrid and adaptive methods show an SOC deviated from the nominal value as it captures the effects of capacity fade and internal resistance rise

- Summary and conclusion -

23

EMR'22, Sion, June 2022

Summary

- □ Multiple attributes to battery aging,
- Development of suitable battery models and state estimation techniques
- □ Integrating non-linearities and real world phenomena
- **Equivalent circuit model with parameter updating based on estimated SOC**
- **□** Trade off accuracy and computational time
- □ Hybrid method combining direct and filter-based methods
- □ Updating of battery capacity based on severity of driving conditions
- Causal, dynamic models, with forward simulation and EMR representation

Conclusion

➔ More realistic estimation of SOC

EMR'22 HES-SO Sion June 2022

« **BIOGRAPHIES AND REFERENCES** »

- Authors -

EMR'22, Sion, June 2022

25

bmoulik@amity.edu

Asst. Prof. Bedatri MOULIK

Department of Electrical and Electronics Engineering Amity school of engineering and technology Amity University, Noida, India PhD in Hybrid/electric vehicles and power management from University of Duisburg-Essen, Germany (2016) Research topics: Power management and control, optimization, battery management

- [Moulik 2017] MOULIK, B., & SÖFFKER, D. (2017). Battery aging and fuel efficiency as optimization objectives as part of a real-time operating system of a multi-source HEV. *Structural Health Monitoring 2017*, (shm).
- [Moulik 2021] Sahu, A. R., Moulik, B., & Bose, B. (2021, August). Online Approximation of SOC and temperature of a electric vehicle by combined OCV-CC method. In *2021 8th International Conference on Signal Processing and Integrated Networks (SPIN)* (pp. 265-269). IEEE.
- [Moulik 2021] Ali, A. M., & Moulik, B. (2021). On the role of intelligent power management strategies for electrified vehicles: A review of predictive and cognitive methods. *IEEE Transactions on Transportation Electrification*.

- Introduction -

EMR'22, Sion, June 2022

27

Pillars of battery modeling

- Electrical model: one or more parallel combinations of resistances and capacitances
- Thermal model: rate of heat generation as a sum of thermal energy through internal resistance and entropic reactions
- Electro-chemical model: electricity-dependent chemical processes with partial differential equations rather than empirical ones
- Empirical modeling: representation of terminal voltages as a mathematical function of SOC and current
- Chemistry and physics-based modeling: for analysis of material-based properties with improved accuracy
- Equivalent circuit modeling: with RC networks and online updating of parameters for reasonable accuracy
- Weighted ampere-hour modeling: with severity factor map to represent battery deterioration due to random cycling and temperature

- Chemistry and physics-based models accurate, but real-time applicability is limited
- Empirical models, real-time applicable, do not require in-depth knowledge of battery chemical structure and reactions
- Weighted Ah-hour models estimate battery's End of Life as a function of Ahthroughput, temperature, and time. Severity– or weight, gives degree of deviation from standard conditions

- Introduction -

EMR'22, Sion, June 2022

28

Pillars of battery modeling

- Direct methods: rely on model accuracy and precision of gathered measurements
- Data-driven methods: based on machine-learning and useful in learning and recognizing complex patterns of system behavior
- Filter based methods: handles uncertainties and disturbances, corrects initial modeling errors, and suppress system noises
- Hybrid methods: combine the advantages of two or more approaches

- Primary purpose of state estimation is to determine essential battery states SOC and SOH under real time operation
- Most of the available algorithms fail to capture combined effects of temperature and capacity fade
- Accurate and reliable estimation of runtime SOC is affected by random and uncertain driving patterns