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Electric vehicles and Lithium ion batteries
o Utilization potential of EV batteries: lifetime and safety issues
Degradation in lithium ion Calendar Environmental
batteries Ageing Conditions
- . Mechanical
O  Multiple attributes Nonlinear R
. . ageing
O Analysis, monitoring and Temperature effects at Lk T~
control cyrllli‘: Temperature
Cooling of the
gfg:ée : = Humidity - - = Esiattery
ystem
> Battery
SoM Degradation
Charging “ Range «— Separator
Electrod
f)cetfrecé / Electrolyte Anode
Current ;¥ —_ Deep . Degr/adahon
/ Discharging /
Prodpct»on — / Interfaces - - Electrodes
Variations s /
Discharging Overcharging i
Degradation
Manufacturing Cyclic Ageing Components https:/advanceda.com/

=>» Utilization of EV battery to its maximum capacity
=>» Requirement of suitable strategies
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Pillars of battery modeling
4 ™
. Direct methods
Electrical i
- Coulomb counting
- Open circuit voltage method
- Impedance spectroscopy
I Electro-thermal
Battery models Data driven
Thermal - Artificial neural networks
- Support vector machine
- Fuzzy logic
Electrochemical State estimation /
- ™
Adaptive filter
i Equivalent circuit A - Kalman filter
Empirical - Thevenin - Particle filter
- Rint - Least square
*— |- Runtime
Mtﬁdglirrg Ch:miséry- - Shephgrd's - Hybrid ~
methodology ase ,_Generic - Deep belief network + kalman
filtter
Weiahted Ah - Kalman filter + fuzzy logic
Physics-based Signiec Al - Kalman filter + support vector
throughput machine

=>» Suitable battery models and state estimation techniques
=>» Incorporating real-time phenomena
=>» Trade-off between accuracy and real-time applicability
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Equivalent circuit model: structural model
O Generic model with 2 RC branches and fixed parameters

Life time Long term Transient
| |
[ [ [ 1 |

Rseries
Vsoc . Rtrans_S Rtrans_L

VWA VW VWY o 4
LT
Ctrans_S Ctrans_L

R IRORS -

Rself discharge Ccappcity Ihatt — | Voc (Vsoc)

=>» Captures most battery phenomena but does not involve dynamic parameter values
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O Dependence on internal cell characteristics and interaction with environment/unknown load demand

Life time Long term Transient
|
[ [ 1 |
Rseries .

Vsoc Rtrans_S Rtrans_L
° B i I
+ Ctrans_S Ctrans_L

% T <l> <> Vbatt
Rself discharge Ceaphcity Ibatt ~ | Voc (Vsoc)
4
0 =

Correction for Cecapacity

=>» Capacity correction
=>» Updating of other parameters based on capacity

8
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Equivalent circuit model: structural model
O Dependence on internal cell characteristics and interaction with environment/unknown load demand

Life time Long term Transient

|
[ [ 1 |
Rseries

Rtrans_S Rtrans_L

NWW——VW— VW o+
i
Ctrans_S Ctrans_L

% T <1> 2> Vbatt

Vsoc
0

Rself discharge Ceaphcity Ibatt ~ | Voc (Vsoc)
1 I .-
Correction for Cecapacity
EMR representation: functional model EMR Ve

_ _ _ (functional
0 Consideration of causal, dynamic models, forward description) ,
simulation to respect energy properties

p()=Vpc (Di(t)

=>» Variable related to energy without instantaneous change: energetic variable is voltage
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State of charge (SOC) estimation

1 t
O Soc(t) =SoC(t—1)————[ nI(t)dt
Ccapcity t-1
Problem 1: Problem 2:
uncertainity capacity fade

= SOC is a function of initial SOC, battery capacity, and ampere hour
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State of charge (SOC) estimation

0 S0C(t) = S0C(t—1) ——— [ ni(t)dt

capcity t

Problem 1:
uncertainity

=» SOC is a function of initial SOC
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State of charge (SOC) estimation

Q SOC(t) =S0C(t—1) —

Problem 1:
uncertainity

L]

Filter-based
approach

=>» Kalman filter based initial SOC prediction >> hybrid method
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State of charge (SOC) estimation

0 S0C(t) = S0C(t—1) ——— [ ni(t)dt

capcity t

Problem 2:
capacity fade

= SOC is a function of battery capacity, and ampere hour
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State of charge (SOC) estimation

a0 SoC(t) = S0C(t—1) — —

t
—— [ (Dt

capcity

Problem 2:
capacity fade

L]

Capacity
correction factor

=>» Integrating the effect of capacity fade with a correction factor>> adaptive method
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Battery capacity

Based on nominal/standard operating conditions (known C-rate, temperature, and DoD), actual
operating conditions (real drive cycles) can be deviated from the standard by a severity factor ¢ as

Ah—nominal

o(DoD,T) =

Ah—actual
Ah — actual = [ |I1(t)|dt

Ah — ef fective = ), o(event) .Ah — actual (event)

=>» Including a severity or weight associated with a driving event
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Determination of C;qpciry and Cpog

O Capacity lost €, can be calculated based on the effective Ah
0 The updated capacity Ccgpeiry (t) is initial minus the lost capacity

Crost(t) = K. (Ah — effective)?

Ccapcity (t) = Cinitiat — Crost (t)

=» Finding the lost capacity based on Ah-effective
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Determination of C;qpciry and Cpog

O The calculated capacity can be used to update/correct the actual cell capacity

Crost(t) = K. (Ah — effective)?

Ccapcity (t) = Cinitiat — Crost (t)
/
Capacity correction for Ccapacity Tramsient

| I/ |
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Vso Rtrans_S Rtrans_L
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+ Ctrans_S Ctrans_L
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= Determining Ccapacity dynamically to correct the battery capacity
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EMR-based BEV model with hybrid-adaptive SOC estimation

0 Simulation of a BEV example from EMR summer school 2021

Mechanical EMR’21, Lille, June 2021
transmission Chassis
> >

l—l'@ )
Bl
—é

Battery Electrical drive
«—> €

.
)

m—
h

=t

electric mono physical
battery drlves gearbox wheel coupllng chassis environment
___________________________________ >E------>»
Ubat Tem Tgear F

= BEV model with functional description using EMR
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EMR-based BEV model with hybrid-adaptive SOC estimation

electric mono physical
battery drlves gearbox wheel coupling chassis environment
""“"u ----------------- >e----- P ------ >e--—--- >
bat Tem Tgear th F Vv
Bat '_’ > Em— | trac ev
¢ NV 1/
Ib tt .Q 'QNh ev o < 1—:?'-
a | gear Fbr / 3 Vo, F.Ee"nv
: Brake) |
| Tem-ref
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| / ! U ev-meas
| I —
Tgear—ref

driver request

=> Inversion-based control of each element step by step
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EMR-based BEV model with hybrid-adaptive SOC estimation

mono physical

electric
battery drlves gearbox wheel coupling chassis environment
--------------------- e S o T
ubat Tem Tgear th F Vv
Bat '_’ > Em— | trac ev
< <—V " /I
lbat + €2 Cun v ol K¢ =t
: a | gear For /" Vo, .
L Brake$ ' !
E iTem-ref
: i I:br_ref
l: | / ! U ev-meas
1 k- —
E Tgear—ref
v

driver request

=>»Estimation of SOC and integration with strategy
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Driving cycles
FTP-75 Artemis-motorway Real
_OCV 1 ' ! 1 !
Hybrid
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=» Hybrid and adaptive methods show an SOC deviated from the nominal value as it captures the effects
of capacity fade and internal resistance rise
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Summary

Multiple attributes to battery aging,

Development of suitable battery models and state estimation techniques
Integrating non-linearities and real world phenomena

Equivalent circuit model with parameter updating based on estimated SOC
Trade off accuracy and computational time

Hybrid method combining direct and filter-based methods

Updating of battery capacity based on severity of driving conditions

O 0O 00 0 0 0 O

Causal, dynamic models, with forward simulation and EMR representation
Conclusion

=» More realistic estimation of SOC
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Pillars of battery modeling | o | o
0  Electrical model: one or more parallel combinations of ——
resistances and capacitances ‘ [ o | Bl

- Fuzzy logic

Electrochemical State estimation N ———
Adaptive filter

- Kalman filter

- Particle filter
- Least square

0  Thermal model: rate of heat generation as a sum of ,
thermal energy through internal resistance and entropic | \ %

Hybrid
- Deep belief network + kalman
filter

reactions

_ Kalman filter + fuzzy logic
- Kalman filter + support vector
. machine

Physics-based

0 Electro—chemical model: electricity—dependent chemical
processes with partial differential equations rather than
empirical ones

0 Empirical modeling: representation of terminal voltages

as a mathematical function of SOC and current > Chemistry and physics-based models

accurate, but real-time applicability is

0 Chemistry and physics-based modeling: for analysis of limited
material-based properties with improved accuracy = Empirical models, real-time applicable, do
0  Equivalent circuit modeling: with RC networks and not require in-depth knowledge of battery
online updating of parameters for reasonable accuracy chemical structure and reactions

=> Weighted Ah-hour models estimate
battery’s End of Life as a function of Ah-
throughput, temperature, and time.
Severity— or weight, gives degree of
deviation from standard conditions

O Weighted ampere—hour modeling: with severity factor
map to represent battery deterioration due to random
cycling and temperature
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Q

Q

Electro-thermal

Direct methods: rely on model accuracy and precision of {
gathered measurements

Data—driven methods: based on machine-learning and
useful in learning and recognizing complex patterns of
system behavior

Thermal

L —

Electrochemical

[ ~ Equivalent circui
Empirical - Ihevenin
- b
- N \ - untime:
Modeling Chemistry- - Shepherd’s
methodology based - Generic
Physics-based
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Weighted Ah-throughput

State estimation

Direct methods
- Goulomb counting
- Open circuit voltage method

- Impedance spectroscopy

Data driven
- Artificial neural networks
- Support vector machine

- Fuzzy logic

Adaptive filter
- Kalman filter
- Particle filter
- Least square

Hybrid
- Deep belief network + kalman
filter

_ Kalman filter + fuzzy logic
- Kalman filter + support vector
machine

Filter based methods: handles uncertainties and
disturbances, corrects initial modeling errors, and
suppress system noises

Hybrid methods: combine the advantages of two or more
approaches

=>» Primary purpose of state estimation is to
determine essential battery states SOC and

SOH under real time operation

=» Most of the available algorithms fail to
capture combined effects of temperature
and capacity fade

=>» Accurate and reliable estimation of runtime
SOC is affected by random and uncertain
driving patterns




